Amplitude and kinetics of action potential-evoked Ca2+ current and its efficacy in triggering transmitter release at the developing calyx of Held synapse.
نویسندگان
چکیده
Action potentials (APs) play a crucial role in evoking Ca2+ currents (ICa) through voltage-gated calcium channels (VGCCs) and transmitter release. During development and neuromodulation, both depolarization and repolarization phases of APs change, but how such changes affect the characteristics of ICa and its efficacy at central synapses is not clear. By paired voltage-clamp recordings of ICa and excitatory postsynaptic currents (IEPSC) with pseudo-APs and real APs, we examined these issues in the developing calyx of Held synapse of postnatal mice. We found that speeding the AP depolarization rate primarily reduces the number of activated VGCCs, whereas shortening the AP repolarization phase decreases the number of activated VGCCs and accelerates their kinetics. The ICa-IESPC relationships are well predicted by the integral but not the amplitude of ICa, and exhibit development- and temperature-dependent shifts toward left, indicating an enhancement in downstream Ca2+ coupling efficacy. Cross-correlation analyses of ICa and IEPSC evoked by real APs and pseudo-APs demonstrated that AP shortening in the half-width from 0.4 ms at postnatal day 8 (P8)-P12 to 0.27 ms at P16-P18 decreases ICa integral by 36%, but increases IEPSC by 72% as a result of developmental upregulation in coupling efficacy. These counteracting actions maintain the release fraction evoked by an AP at approximately 10% of the maximal quantal output. We suggest that AP narrowing is a critical adaptation for the calyx of Held synapse to control the quantal output per AP and is likely important for the efficient use of the readily releasable pool of synaptic vesicles during high-frequency neurotransmission.
منابع مشابه
Presynaptic plasticity at two giant auditory synapses in normal and deaf mice.
Large calyceal synapses are often regarded as simple relay points, built for high-fidelity and high-frequency synaptic transmission and a minimal requirement for synaptic plasticity, but this view is oversimplified. Calyceal synapses can exhibit surprising activity-dependent developmental plasticity. Here we compare basal synaptic transmission and activity-dependent plasticity at two stereotypi...
متن کاملTiming and efficacy of Ca2+ channel activation in hippocampal mossy fiber boutons.
The presynaptic Ca2+ signal is a key determinant of transmitter release at chemical synapses. In cortical synaptic terminals, however, little is known about the kinetic properties of the presynaptic Ca2+ channels. To investigate the timing and magnitude of the presynaptic Ca2+ inflow, we performed whole-cell patch-clamp recordings from mossy fiber boutons (MFBs) in rat hippocampus. MFBs showed ...
متن کاملPresynaptic nanodomains: a tale of two synapses
Here we summarize the evidence from two "giant" presynaptic terminals-the squid giant synapse and the mammalian calyx of Held-supporting the involvement of nanodomain calcium signals in triggering of neurotransmitter release. At the squid synapse, there are three main lines of experimental evidence for nanodomain signaling. First, changing the size of the unitary calcium channel current by alte...
متن کاملNMDA receptor-dependent presynaptic inhibition at the calyx of Held synapse of rat pups
N-Methyl-d-aspartate receptors (NMDARs) play diverse roles in synaptic transmission, synaptic plasticity, neuronal development and neurological diseases. In addition to their postsynaptic expression, NMDARs are also expressed in presynaptic terminals at some central synapses, and their activation modulates transmitter release. However, the regulatory mechanisms of NMDAR-dependent synaptic trans...
متن کاملRegulation of transmitter release by Ca(2+) and synaptotagmin: insights from a large CNS synapse.
Transmitter release at synapses is driven by elevated intracellular Ca(2+) concentration ([Ca(2+)](i)) near the sites of vesicle fusion. [Ca(2+)](i) signals of profoundly different amplitude and kinetics drive the phasic release component during a presynaptic action potential, and asynchronous release at later times. Studies using direct control of [Ca(2+)](i) at a large glutamatergic terminal,...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 26 21 شماره
صفحات -
تاریخ انتشار 2006